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H4B 1R6 Canada

Received 8 October 2003
Published 20 April 2004
Online at stacks.iop.org/JPhysA/37/5067 (DOI: 10.1088/0305-4470/37/18/011)

Abstract
Using a reformulation of the method of (p, q) webs, we study the four-
dimensional N = 1 quiver theories from M-theory on seven-dimensional
manifolds with G2 holonomy. We first construct such manifolds as U(1)

quotients of eight-dimensional toric hyper-Kähler manifolds, using N = 4
supersymmetric sigma models. We show that these geometries, in general,
are given by real cones on S2 bundles over complex two-dimensional toric
varieties, V2 = Cr+2/C∗r . Then we discuss the connection between the
physics content of M-theory on such G2 manifolds and the method of (p, q)

webs. Motivated by a result of Acharya and Witten (Preprint hep-th/0109152),
we reformulate the method of (p, q) webs and reconsider the derivation
of the gauge theories using toric geometry Mori vectors of V2 and brane
charge constraints. For WP2

w1,w2,w3 , we find that the gauge group is given
by G = U(w1n) × U(w2n) × U(w3n). This is required by the anomaly
cancellation condition.

PACS number: 11.25.Yb

1. Introduction

Since the discovery of superstring dualities, four-dimensional supersymmetric quantum
field theories (QFT4) have been a subject of great interest in connection with superstring
compactification on Calabi–Yau manifolds and D-brane physics [1–4]. For example,
embedding N = 2QFT4 in type IIA superstring compactified on Calabi–Yau threefolds,
with K3 fibration, has found a very nice geometric description using the so-called geometric
engineering method [5–10]. In this programme, these models, which give exact results for the
moduli space of the type IIA Coulomb branch, are represented by Dynkin quiver diagrams of
Lie algebras [7–10].
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Quite recently, a special interest has been devoted to four-dimensional gauge models
preserving only four supercharges [11, 12]. These field models admit a very nice description
in the so-called (p, q) webs [13–24]. This method concerns the study of N = 1 four-
dimensional quiver theories arising on the worldvolume of D3-branes transverse to singular
Calabi–Yau threefolds, CY 3

B . The subscript here refers to type IIB string geometry. The
manifolds are complex cones over complex two-dimensional toric varieties V2, e.g. del Pezzo
surfaces. They are mirror manifolds of local Calabi–Yau threefolds CY 3

A given by elliptic and
C∗ fibrations over the complex plane. Under local mirror symmetry, a D3-brane in type IIB
geometry becomes a D6-brane wrapping a T 3 in type IIA mirror geometry. In this way, the
N = 1 four-dimensional quiver theories can be obtained from D6-branes wrapping 3-cycles
Si in the mirror manifold. For instance, a D6-brane on T 3, whose homology class is

[T 3] =
�∑

i=1

niSi (1.1)

where {Si, i = 1, . . . , �} form a basis of H3
(
CY 3

A,Z
)
, gives a four-dimensional N = 1

supersymmetric gauge theory with a gauge group

G =
�∏

i=1

U(ni) (1.2)

and quiver matrix

Iij = Si · Sj . (1.3)

In equations (1.1) and (1.2), the vector ni is specified by the anomaly cancellation condition

�∑

i=1

Iijni = 0. (1.4)

The above identities in the method of (p, q) webs are very exciting. First, the same equation
forms have been used in the geometric engineering of superconformal models with eight
supercharges. In this case, the quiver matrix is identified with an affine ADE Cartan matrix
K and the gauge group is G = ∏

i SU(sin). The positive integers si appearing in G are the
usual Dynkin weights. They form a special positive definite integer vector s = (si) satisfying
Kij sj = 0, as required by the vanishing of the beta function. Second, for � = 3 corresponding
to complex two-dimensional weighted projective spaces in type IIB geometry, the physics
content with unitary gauge groups and charged chiral matter seems to be similar to four-
dimensional N = 1 models obtained from M-theory on singular G2 manifolds studied first in
[25], see also [26, 27]. These manifolds are constructed as circle quotients of eight-dimensional
toric hyper-Kähler (HK) manifolds. Following [25], the twistor space over the weighted
projective space WP2

m,m,n has an interpretation in type IIA superstring as an intersection of
three groups of D6-branes with multiplicities m,m, n leading to SU(m) × SU(m) × SU(n)

gauge symmetry. According to this feature, one might ask the following question. Is there a
connection between the approach of (p, q) webs and M-theory on G2 manifolds1? However,
this connection may naturally lead to the need of a reformulation of the method of (p, q) webs.
The reason for this is that the gauge symmetry in the M-theory compactification involves the
weights of the weighted projective space WP2. In this paper, we address this question using
toric geometry data of G2 manifolds as U(1) quotients of eight-dimensional HK manifolds,

1 Besides this similarity, much of the D6-branes physics content can be interpreted in M-theory on local G2 manifolds,
leading to N = 1 supersymmetric models in four dimensions.
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and by reconsidering the method of (p, q) webs. This study may complete the analysis of
[28] dealing with discrete G2 orbifolds using the McKay correspondence [29].

Our programme will proceed in two steps:

(i) We study G2 manifolds as U(1) quotients of eight-dimensional toric HK manifolds,
X7 = X8/U(1). The manifold X8 is obtained using relevant constraint equations in
terms of two-dimensional N = 4 sigma models with U(1)r gauge symmetry and r + 2
hypermultiplets [25, 26, 30]. We show that the resulting seven-dimensional manifolds,
in general, are given by real cones on S2 bundles over complex two-dimensional toric
varieties

V2 = Cr+2/C∗r . (1.5)

Explicit models are presented in terms of two-dimensional N = 2 sigma model
realizations of V2.

(ii) We discuss the link between the physics content of M-theory on such G2 manifolds and
the methods of (p, q) webs. In particular, we reconsider and reformulate the (p, q) web
equations using the toric geometry Mori vectors of V2 and set of brane charge constraint
equations. For the weighted projective space WP2

w1,w2,w3 , for example, we find the
following gauge group:

G = U(w1n) × U(w2n) × U(w3n). (1.6)

This is required by the anomaly cancellation condition. With an appropriate choice of
weight vectors, we recover the result of Acharya and Witten given in [25].

The plan of this paper is as follows. In section 2, we briefly review the main lines of the
toric geometry method for treating complex manifolds. Then we give the interplay between the
toric geometry and two-dimensional N = 2 supersymmetric gauge theories. In section 3, we
study G2 manifolds as U(1) quotients of eight-dimensional toric HK manifolds X8 constructed
from D-flatness conditions of two-dimensional field theory with N = 4 supersymmetry. Then
we identify the U(1) symmetry group with the toric geometry circle actions of X8 to present
quotients X7 = X8/U(1) of G2 holonomy. Explicit models are given in terms of real cones
on an S2 bundle over complex two-dimensional toric varieties V2. In section 4, we engineer
N = 1 quiver models from G2 manifolds. We discuss the link between the physics content
of M-theory on such G2 manifolds and the method of (p, q) webs. We reconsider and
reformulate the (p, q) equations using the toric geometry Mori vectors of V2 and set of brane
charge constraint equations. In particular, for the weighted projective space WP2

w1,w2,w3 , we
find that the gauge group is given by (1.6). In section 5, we give illustrating applications. In
section 6, we give our conclusion.

2. Toric geometry

In this section, we collect a few facts on toric geometry of complex manifolds. These facts are
needed later to construct a special type of G2 manifold, as U(1) quotients of eight-dimensional
toric HK manifolds. Roughly speaking, toric manifolds are complex n-dimensional manifolds
with T n fibration over n-dimensional base spaces with boundary [7, 10, 31–34]. They exhibit
toric actions U(1)n allowing us to encode the geometric properties of the complex spaces in
terms of simple combinatorial data of polytopes �n of the Rn space. In this correspondence,
fixed points of the toric actions U(1)n are associated with the vertices of the polytope �n, the
edges are fixed one-dimensional lines of a subgroup U(1)n−1 of the toric action U(1)n, and
so on. Geometrically, this means that the T n fibres can degenerate over the boundary of the
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base. Note that in the case where the base space is compact, the resulting toric manifold will
be compact as well.

In string theory, the power of the toric geometry representation is due to the following
points. (1) The toric data of the polytope �n have similar features to the ADE Dynkin diagrams
leading to non-Abelian gauge symmetries in type II superstring compactifications on Calabi–
Yau manifolds [7–10]. (2) The toric fixed loci, which correspond to the vanishing cycles, have
been known to be associated with D-brane charges [32]. The latter will be used in section 4
to discuss the physics content of M-theory on our proposed manifolds of G2 holonomy, using
a reformulation of the method of (p, q) webs in type II superstring on Calabi–Yau threefolds.

To illustrate the main idea of toric geometry, let us describe the philosophy of this subject
through certain useful examples.

(i) P1 projective space.

This is the simplest example in toric geometry which turns out to play a crucial role in the
building blocks of higher-dimensional toric varieties and in the study of the small resolution
of ADE singularities of local Calabi–Yau manifolds. P1 has a U(1) toric action

z → eiθ z (2.1)

with two fixed points v1 and v2 on the real line. The latter points, which can be generally
chosen as v1 = −1 and v2 = 1, describe respectively north and south poles of the real two
sphere S2 ∼ P1. The corresponding one-dimensional polytope is just the segment [v1, v2]
joining the two points v1 and v2. Thus, P1 can be viewed as a segment [v1, v2] with a circle
on top, where the circle vanishes at the endpoints v1 and v2.

(ii) P2 projective space.

P2 is a complex two-dimensional toric variety defined by

P2 = C3\{(0, 0, 0)}
C∗ (2.2)

where C∗ acts as follows:

(z1, z2, z3) → (λz1, λz2, λz3). (2.3)

It admits a U(1)2 toric action

(z1, z2, z3) → (eiθ1z1, eiθ2z2, z3) (2.4)

exhibiting three fixed points v1, v2 and v3. The corresponding polytope �2 is a finite sublattice
of the Z2 square lattice. It describes the intersection of three P1 defining a triangle (v1v2v3) in
the R2 plane. A convenient choice of the data of these three vertices is as follows : v1 = (1, 0),
v2 = (0, 1) and v3 = (−1,−1). Thus, �2 has three edges, namely [v1, v2], [v2, v3] and [v3, v1]
stable under the three U(1) subgroups of U(1)2; two subgroups are just the two U(1) factors,
while the third subgroup is the diagonal one. P2 can be viewed as a triangle over each point
of which there is an elliptic curve T 2. This torus shrinks to a circle at each segment [vi, vj ]
and it shrinks to a point at each vi . The above toric realization can be pushed further for
describing the same phenomenon involving complex n-dimensional toric varieties that are
more complicated than projective spaces. The latter spaces can be expressed in the following
form:

Vn = Cn+r\U
C∗r (2.5)

where now we have rC∗ actions given by

C∗r : zi → λQa
i zi i = 1, 2, . . . , n + r a = 1, 2, . . . , r. (2.6)
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In this equation, Qa
i are integers. For each a they form the so-called Mori vectors in toric

geometry. They generalize the weight vector (wi) of the complex n-dimensional weighted
projective space WPn

w1,...,wn+1
. U is a subset of Ck chosen by triangulation [7].

Equation (2.5) means that Vn has a T n fibration, obtained by dividing T n+r by the U(1)r

gauge symmetry

zi → eiQa
i ϑ

a

zi a = 1, . . . , r (2.7)

where ϑa are the generators of the U(1) factors. Vn can be represented by a toric diagram
�(Vn) spanned by k = n + r vertices vi of a Zn lattice satisfying

n+r∑

i=1

Qa
i vi = 0 a = 1, . . . , r. (2.8)

The toric geometry manifolds we have been describing have an interesting realization through
linear sigma models, where one considers two-dimensional supersymmetric N = 2 gauge
systems with U(1)r gauge group and n + r chiral fields Xi with a Qa

i matrix charge [35]. In
this way, the Kähler manifold Vn is the minimum of the D-term potential (Da = 0), up to
U(1)r gauge transformations, namely

n+r∑

i=1

Qa
i |Xi |2 = Ra (2.9)

where the Ra are Fayet–Iliopoulos (FI) coupling parameters. The (local) Calabi–Yau condition
is satisfied by

n+r∑

i=1

Qa
i = 0 ∀ a (2.10)

which means that the system flows in the infrared to a non-trivial superconformal theory
[35, 36]. Under local mirror symmetry, this toric Calabi–Yau sigma model maps to
Landau–Ginsburg (LG) models [37–40]. In this way, the mirror version of the constraint
equation (2.9), giving the LG superpotential, reads

∑

i

yi = 0 (2.11)

subject to
∏

i

y
Qa

i

i = e−ta (2.12)

where yi are LG dual chiral fields which can be related, up to some field changes, to sigma
model fields, and where ta are the complexified FI parameters defining now the complex
deformations of the LG Calabi–Yau superpotentials.

Note that the above two-dimensional N = 2 toric sigma models can be extended to
N = 4 supersymmetry models with hypermultiplets leading to toric HK geometries [41]. In
the rest of this paper, we will use toric geometry and HK analysis to study seven-dimensional
manifolds with G2 holonomy. The latter are U(1) quotients of eight-dimensional toric HK
manifolds X8.

3. G2 manifolds as U (1) quotients

3.1. G2 manifolds and N = 4 D-flatness conditions

It is known that in order to get a semi-realistic four-dimensional theory from M-theory it
is necessary to consider a compactification on a seven-dimensional manifold X7 with G2
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holonomy [42–51]. In this way, the resulting models with N = 1 supersymmetry depend on
the geometric properties of X7. For instance, if X7 is smooth, the low-energy theory contains, in
addition to N = 1 supergravity, only Abelian gauge symmetry and no charged chiral fermions.
Non-Abelain gauge symmetries can be obtained by considering limits where X7 develops
ADE orbifold singularities using wrapped M2-branes on vanishing 2-cycles [43]. However,
the presence of conical singularities leads to charged chiral fermions. Following [25], an
interesting analysis for building such geometries is to consider quotients of eight-dimensional
toric HK manifolds X8 by a U(1) circle symmetry. The U(1) group has been chosen such
that it commutes with the SU(2) symmetry, permuting the three complex structures of HK
geometries. A priori, there are many ways to choose the U(1) group action. Two situations
have been given in [25] but here we will identify the U(1) group with the toric geometry
circle action of complex subvarieties within HK geometries. In particular, we will use the
HK analysis to present explicit models with G2 holonomy group leading to interesting N = 1
supersymmetric gauge theories in four dimensions. To do so, we consider two-dimensional
N = 4 supersymmetric gauge theories with U(1)r gauge symmetries and r +2 hypermultiplets
with a Qa

i matrix charge [36, 41]. The N = 4D-flatness equations of such models are generally
given by

r+2∑

i=1

Qa
i

[
φα

i φ̄iβ + φiβφ̄
α

i

] = �ξa �σα
β a = 1, . . . , r. (3.1)

In these equations, φα
i denote r + 2 component field doublets of hypermultiplets, �ξa are r

FI 3-vector couplings rotated by the SU(2) symmetry, and �σα
β are the traceless 2 × 2 Pauli

matrices. In this construction, for each U(1) factor, there are three real constraint equations
transforming as an iso-triplet of the SU(2)R-symmetry (SU(2)R) acting on the HK structures.

Using the SU(2)R transformations

φα = εαβφβ (φα) = φα ε12 = ε21 = 1 (3.2)

and replacing the Pauli matrices by their expressions, the identities (3.1) can be split as follows:

k∑

i=1

Qa
i

(∣∣φ1
i

∣∣2 − ∣∣φ2
i

∣∣2) = ξ 3
a (3.3)

k∑

i=1

Qa
i φ

1
i φ

2
i = ξ 1

a + iξ 2
a (3.4)

k∑

i=1

Qa
i φ

2
i φ

1
i = ξ 1

a − iξ 2
a . (3.5)

Dividing the resulting space of (3.3)–(3.5) by U(1)r gauge transformations, we find precisely
an eight-dimensional toric HK manifold X8. However, explicit solutions of these geometries
depend on the values of the FI couplings. Taking ξ 1

a = ξ 2
a = 0 and ξ 3

a > 0, (3.3)–(3.5)
describe the cotangent bundle over complex two-dimensional toric varieties [30]. Indeed,
if we set all φ2

i = 0, we get a complex two-dimensional toric variety V2 defined by∑2+r
i=1 Qa

i

∣∣φ1
i

∣∣2 = ξ 3
a , (a = 1, . . . , r). Equations (3.4)–(3.5) mean that the φ2

i define the
cotangent orthogonal fibre directions over V2. This manifold has four toric geometry circle
actions: U(1)2

base × U(1)2
fibre. Two of them correspond to the V2 toric base space denoted by

U(1)2
base, while the remaining ones, U(1)2

fibre, act on the fibre orthogonal cotangent directions.
To get the corresponding seven-dimensional manifolds with G2 holonomy, we will identify
the U(1) group symmetry of the quotient used in [25] with one finite circle toric action.
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Identifying this U(1) symmetry with one U(1)fibre, one finds the following seven-dimensional
manifold

X7 = X8/U(1)fibre. (3.6)

Since C2/U(1) = R × S2, this quotient space is now isomorphic to an R × S2 bundle
over a V2. Similar to [25], equation (3.6) describes real cones on an S2 bundle over V2.
Mathematically, it is not easy to reveal that these quotient spaces have G2 holonomy group.
However, one can show this using a physical argument. Indeed, V2, with h1,0 = h2,0 = 0,
preserves 1/4 of initial supercharges and in the presence of S2 it should be 1/8. In this way,
the supersymmetry tells us that the holonomy of (3.6) is the G2 Lie group. Thus, M-theory
on the above seven-dimensional manifold leads to N = 1 theory in four dimensions.

3.2. Explicit models from V2 geometries

To better understand the structure of (3.3)–(3.6), let us give illustrating models. In particular,
we will consider special models corresponding to N = 4 sigma model with conformal
invariance. For this reason, we will restrict ourselves to eight-dimensional toric HK manifolds
X8 with the Calabi–Yau condition (2.10) in N = 4 supersymmetric analysis. In this way, the
geometry of X8 depends on the manner we choose the U(1)r matrix gauge charge Qa

i satisfying
the Calabi–Yau condition. We first study complex two-dimensional weighted projective spaces
WP2, after which we will consider the Hirzebruch surfaces. Other extended models are also
presented.

3.2.1. V2 as weighted projective spaces. For constructing these models, we consider
a U(1) gauge symmetry with three hypermultiplets φi of charges (Q1,Q2,Q3) such that
Q1 + Q2 + Q3 = 0. One way to solve this constraint equation is to take Q1 = m1,Q2 =
−m1 − m2 and Q3 = m2. This gives WP2

m1,m1+m2,m2 as a base geometry in the G2 manifold.
Using examples, let us see how we obtain this geometry.

Example 1. (m1,m2) = (1, 1). This example corresponds to three hypermultiplets φi with
the vector charge Qi = (1,−2, 1). After permuting the role of φ1

2 and φ2
2 and making

the following field changes φ1
1 = ϕ1, φ

2
1 = ψ1, φ

1
3 = ϕ2, φ

2
3 = ψ3,−φ

2
2 = ϕ2, φ

1
2 = ψ2,

equations (3.3)–(3.5) become

(|ϕ1|2 + |ϕ3|2 + 2|ϕ2|2) − (|ψ1|2 + |ψ3|2 + 2|ψ2|2) = ξ 3 (3.7)

ϕ1ψ1 + ϕ3ψ3 + 2ϕ2ψ2 = 0 (3.8)

ϕ1ψ1 + ϕ3ψ3 + 2ϕ2ψ2 = 0. (3.9)

These equations describe a cotangent bundle over WP2
1,2,1. Indeed, taking ψ1 = ψ2 =

ψ3 = 0, equation (3.7) reduces to |ϕ1|2 + |ϕ3|2 + 2|ϕ2|2 = ξ 3 and defines a WP2
1,2,1 weighted

projective space, where ξ 3 is a Kähler real parameter controlling its size. For generic values of
ψi , equations (3.7)–(3.9) can be interpreted to mean that ψi parametrize the orthogonal fibre
directions on WP2

1,2,1. Dividing by one finite toric geometry fibre circle action, we find a real
cone on an S2 bundle over WP2

1,2,1 with G2 holonomy.

Example 2. (m1,m2) = (1, 2). As another example, we consider a vector charge as follows
Qi = (1,−3, 2). This example is quite similar to the first one, and its treatment will be parallel
to the first one. After making similar field changes, this example describes WP2

1,3,2 in the
base geometry of an eight-dimensional manifold. After the U(1) quotient, the corresponding
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seven-dimensional manifold X7 will be a real cone on the S2 bundle over WP2
1,3,2. We will

see later that this geometry leads to a four-dimensional model which might be related to the
grand unified symmetry.

3.2.2. V2 as Hirzebruch surfaces Fn. Fn are complex two-dimensional toric surfaces defined
by non-trivial fibrations of a P1 over a P1. These may be viewed as the compactification of
complex line bundles over P1 by adding a point to each fibre at infinity. Such line bundles are
classified by an integer n, the first Chern class being integrated over P1. For simplicity, we
will restrict ourselves to F0 with a trivial fibration. A way to write down the F0 N = 4 sigma
model is to start with one P1 and then extend the result to F0. Indeed, one P1 corresponds to
a U(1) two-dimensional N = 4 linear sigma model with two hypermultiplets with a vector
charge (1,−1). Making a similar analysis of previous examples, the D-flatness conditions
(3.1) reduce to

(|ϕ1|2 + |ϕ2|2) − (|ψ1|2 + |ψ2|2) = ξ 3 (3.10)

ϕ1ψ1 + ϕ2ψ2 = 0 (3.11)

ψ1ϕ1 + ψ2ϕ2 = 0 (3.12)

and describe the cotangent bundle over a P1, defined by |ϕ1|2 + |ϕ2|2 = ξ 3. The model
corresponding to F0 is obtained by considering a U(1)2 two-dimensional N = 4 linear sigma
model with four hypermultiplets with the following charges:

Q
(1)
i = (1,−1, 0, 0) Q

(2)
i = (0, 0, 1,−1). (3.13)

In this way, N = 4 D-flatness constraint equations describe the cotangent bundle over F0.
After dividing by one finite toric geometry circle action, we get a real cone on the S2 bundle
over F0.

3.3. Other models from WP2

Here, we study some extended models using more general N = 4 two-dimensional gauge
theories. In particular, we consider two possible generalizations for WP2. The first model
describes the blowing up of WP2 at one point. It has a similar feature to the F2 geometry.
The second model deals with a model with ADE Cartan matrix gauge charges leading to ADE
intersecting geometries.

3.3.1. Blowing up of WP2 at one point. For simplicity, we consider WP2
1,2,1 as an example.

This space has a Z2 orbifold singularity corresponding to non-trivial fixed points under the
homogeneous identification

(z1, z2, z3) ≡ (λz1, λ
2z2, λz3). (3.14)

Taking λ = −1, WP2
1,2,1 has a Z2 orbifold singularity at (z1, z2, z3) = (0, 1, 0). This

singularity may be blown up by introducing an exceptional divisor. In the two-dimensional
N = 2 sigma model, this can be deformed by introducing an extra chiral field X4 and a
U(1) gauge group factor. In this way, the corresponding eight-dimensional manifolds can be
described by a U(1)2 linear sigma model with four hypermultiplets with the following charges:

Q
(1)
i = (1,−2, 1, 0) Q

(2)
i = (0,−1, 0, 1). (3.15)

This model gives the same G2 manifold corresponding to the F2 Hirzebruch surface.
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3.3.2. ADE intersecting geometry. Another generalization is to consider the intersecting
weighted projective spaces according to ADE Dynkin diagrams by imitating the analysis of
the N = 2 sigma model. This involves two-dimensional N = 4 supersymmetric U(1)r

gauge theory with (r + 2) φα
i hypermultiplets with ADE Cartan matrices as matrix gauge

charges. For simplicity, let us consider the Ar Lie algebra where the matrix charge is given
by Qa

i = −2δa
i + δa

i−1 + δa
i+1, a = 1, . . . , r . Putting these equations into the D-flatness

equations (3.1), one gets the following system of 3r equations:
(∣∣φ1

a−1

∣∣2
+

∣∣φ1
a+1

∣∣2 − 2
∣∣φ1

a

∣∣2) − (∣∣φ2
a−1

∣∣2
+

∣∣φ2
a+1

∣∣2 − 2
∣∣φ2

a

∣∣2) = ξa (3.16)

φ1
a−1φ

2
a−1 + φ1

a+1φ
2
a+1 − 2φ1

aφ
2
a = 0 (3.17)

φ2
a−1φ

1
a−1 + φ2

a+1φ
1
a+1 − 2φ2

aφ
1
a = 0. (3.18)

An examination of these equations reveals that V2 consists of r intersecting WP2
1,2,1 according

to the Ar Dynkin diagram [30]. Actually, this geometry generalizes the usual ADE geometry
corresponding to 2-cycles of K3 surfaces [7–10]. One expects to have a similar feature in the
compactification of M-theory on G2 manifolds with intersecting WP2

1,2,1.
The previous analysis is also possible for models with del Pezzo surfaces as a base

geometry of G2 manifolds. Note that, these surfaces have been used in the building of
N = 1 supersymmetric gauge theories in four dimensions using the so-called (p, q) webs.
These gauge theories arise on the worldvolume of D3-branes transverse to local Calabi–Yau
threefolds CY 3

B given by complex cones over del Pezzo surfaces [14, 22]. In this work, we will
show that this physics is related to M-theory on G2 manifolds with two complex dimension
toric manifolds in the base geometry.

4. On M-theory on G2 manifolds and (p, q) webs

So far, we have constructed a special type of G2 manifold as U(1) quotients of eight-
dimensional toric HK manifolds. This section will be concerned with M-theory on such
manifolds. We will try to find a superstring interpretation of this using D-brane physics. In
particular, we will discuss the connection between the physics content of M-theory on such G2

manifolds and the method of (p, q) webs, leading to N = 1 supersymmetric gauge theories
in four dimensions. The analysis we use here is based on a reconsideration of the method
of (p, q) webs and a reformulation of the intersection number structures in terms of the toric
geometry data of V2 varieties.

Before proceeding, let us recall and quote some crucial points supporting our discussion.
On one hand, according to [25], M-theory on G2 manifolds as the U(1) quotient of eight-
dimensional conical toric HK manifolds, has an interpretation in terms of intersecting D6-
branes in a type IIA superstring model. In particular, the geometry of WP2 describes the
intersection of three sets of D6-branes. For example, the geometry WP2

m,m,n with m,m and
n relatively prime corresponds to a pair of two spheres of Am singularities and a single of
An singularities two spheres. In the type IIA superstring picture, this is equivalent to the
intersection of three sets of D6-branes with multiplicities m,m and n leading to SU(m) ×
SU(m)×SU(n) gauge symmetry with chiral multiplets in the (m, m̄, 1)+(1,m, n̄)+(m̄, 1, n)

bifundamental representations. This gauge system is represented by a quiver triangle which
may be viewed as the toric geometry graph of WP2. On the other hand, the same physics
content models can appear in type IIA superstring compactified on local elliptic fibration
Calabi–Yau threefolds CY 3

A in the presence of D6-branes wrapping 3-cycles Si and filling the
four-dimensional Minkowski spacetime [11, 12]. In terms of gauge theory, each 3-cycle Si
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is associated with a single gauge group factor and the intersection numbers (1.4) count the
number of N = 1 chiral multiplets which transform in the bifundamental representation. We
will see later that the information on the gauge system is encoded in the intersection numbers.
Under mirror symmetry, the physics of D6-branes wrapping 3-cycles maps to IIB D3-branes
transverse to local Calabi–Yau threefolds CY 3

A. The latter are complex cones over del Pezzo
surfaces or more generally complex two-dimensional toric manifolds V2. In this way, the
N = 1 four-dimensional quiver theory can be obtained from type IIB geometry using the
so-called (p, q) brane webs. Indeed, the toric skeletons of these varieties are defined by
the (p, q) web charges of D5-branes. They correspond to the loci of points at which some
1-cycles of the elliptic curve fibration of V2 shrinks to zero radius [32]. The physics content
of these models can be determined explicitly from the geometry of the (p, q) webs. For more
details on this method, see [14, 15]. In particular, if the vanishing 1-cycles of the elliptic
fibration Ci ≡ (pi, qi), the intersection numbers, in type IIA mirror geometry, read

Iij = Ci · Cj = piqj − pjqi. (4.1)

The set of the ranks of the gauge groups ni is a null vector of this matrix, i.e
∑

i

(piqj − pjqi)ni = 0. (4.2)

Until this level, the connection between the method of (p, q) brane webs and the Acharya–
Witten model [25] is not obvious. We propose that this connection requires the introduction
of the Mori vector charge Qa

i in the description of (p, q) webs. Our solution was inspired by
the following.

(1) The study of M-theory on the local geometry of Calabi–Yau threefolds having toric
realization in terms of (p, q) D5-branes of type IIB superstrings [32]. In this way, the
D-brane charges are associated with the vanishing cycles in the toric representation.

(2) The result of Acharya–Witten on M-theory on G2 manifolds, where the set of ranks of
gauge groups coincide with the weight vector of the WP2 [25].

(3) The local mirror symmetry application in type II superstrings, where the mirror constraint
equations involve the toric geometry data of the original manifolds [37–40].

Besides these points, a close examination of the formulation of the (p, q) webs reveals,
however, that the matrix intersection (4.1) appears in the ordinary and weighted projective
spaces. Moreover, it does not carry any transparent toric geometry data distinguishing these
geometries. Taking into account this observation, the connection we are after leads us to
reformulate the intersection number structures by introducing the toric geometry Mori vectors
Qa

i and a set of brane charge constraint equations. To make connection with [25], we restrict
ourselves to the weighted projective spaces where �Q1 = (w1, w2, w3). Given a set of charges
(pi, qi), i = 1, 2, 3, we propose the intersection number formula

I ij = wiwj (piqj − piqj ) (4.3)

with the following constraint equations:

w2
1p1 + w2

2p2 + w2
3p3 = 0 w2

1q1 + w2
2q2 + w2

3q3 = 0. (4.4)

Now, the set of ranks of the gauge groups ni should satisfy the following constraint:
∑

i

Iij ni = 0 (4.5)

as required by the anomaly cancellation condition [14, 15]. Using equation (4.4), it is easy to
see that this condition can be satisfied in terms of the weights of WP2 as follows:

ni = win (4.6)
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and so the corresponding gauge symmetry is given by

G =
∏

i=1

U(win). (4.7)

Our reformulation of the (p, q) webs has the following nice features.

(1) This formulation is quite similar to the geometric engineering of four-dimensional N = 2
superconformal field theories with a gauge group G = ∏

i=1 SU(sin) where the si are
the usual Dynkin labels that are a null vector of affine Cartan matrices as required by the
vanishing of the beta function.

(2) For wi = 1, we recover the simple model with a gauge group U(n)3 and matter triplication
in each bifundamental [20, 21].

(3) For n = 1, the corresponding gauge theory is now quite similar to the interpretation of
M-theory on G2 manifolds given in [25]. In this way, the gauge group reads

G =
3∏

i=1

U(wi). (4.8)

In the infrared limit the U(1) factors decouple and one is left with the gauge symmetry

G =
3∏

i=1

SU(wi). (4.9)

Taking an appropriate choice of weights, we recover the physical model given in [25].
(4) The corresponding field model is represented by a triangle quiver diagram

�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
�

�
�

��
U(w1n)

U(w2n) U(w3n)

f3

f1

f2

Summarizing, many aspects of the physics of M-theory on such G2 manifolds
are reproduced by this formulation of type IIB superstring on complex lines on V2 in
the presence of (p, q) brane charges, suggesting equivalence of the two descriptions.
Performing local mirror symmetry, we end with local elliptic type IIA geometry with D6-
branes filling four-dimensional spacetime. The corresponding gauge group and quiver
diagram can be obtained using the (p, q) webs toric geometry data of V2.

5. Illustrating models

In this section, we will give two illustrating applications. They concern the examples studied
in section 3: WP2

1,2,1 and WP2
1,3,2.



5078 A Belhaj

5.1. U(n)2 × U(2n) gauge theory

Consider, first, the geometry of WP2
1,2,1 in M-theory compactifications. In (p, q) webs, this

is equivalent to taking three stacks of branes each, wrapping the following 1-cycles

C1 = (−2, 0) C2 = (0,−1) C3 = (2, 4). (5.1)

In this case, the intersection numbers read

I12 = 4 I31 = 8 I23 = 4. (5.2)

For one D6-brane, this example leads to an N = 1 spectrum with a gauge group U(1)2 ×U(2)

and bifundamental matter. This model agrees with the result of Acharya and Witten given in
[25]. While for n D6-branes, the above charge configurations give an N = 1 spectrum with a
gauge group U(n)2 × U(2n) and bifundamental matter.

5.2. U(n) × U(2n) × U(3n) gauge model

The geometry of WP2
1,3,2 is very exciting in this analysis because it may lead to the symmetry

of the grand unified theory (GUT)2. For this example, we consider three stacks of n D6-branes
each, wrapping the following 1-cycles:

C1 = (4, 9) C2 = (−1, 0) C3 = (0,−1). (5.3)

In this case, the intersection numbers read

I12 = 18 I31 = 12 I23 = 6. (5.4)

This yields an N = 1 spectrum with a gauge group U(n)×U(2n)×U(3n) and bifundamental
matter. For n = 1, one gets U(1) × U(2) × U(3) as gauge symmetry.

Concluding this section, it is interesting to make a comment regarding the numbers
appearing in (5.2) and (5.4), counting the number of N = 1 chiral multiplets fi in the
corresponding gauge systems. The latter have a remarkable feature which has a nice
interpretation using the recent derivation of local mirror symmetry in two-dimensional field
theory with N = 2 supersymmetry [39]. Indeed, in the above two examples, fi can be written
as follows.

f1 = w2w3d f2 = w1w3d f3 = w1w2d (5.5)

where d is the degree of the following homogeneous LG Calabi–Yau superpotentials

y2 + x4 + z4 + et xyz = 0 y2 + x3 + z6 + et xyz = 0 (5.6)

mirror to type IIB N = 2 sigma model on the anti-canonical line bundles over WP2
1,2,1 and

WP2
1,2,3, respectively.

6. Conclusion

In this paper, we have studied N = 1 supersymmetric gauge theories embedded in M-theory
on local seven-dimensional manifolds with G2 holonomy group. We have engineered the
N = 1 quiver models from G2 manifolds, as U(1) quotients of eight-dimensional toric HK
manifolds. The corresponding quiver models have been obtained using a reformulation of the
method of (p, q) webs. Our main results may be summarized as follows.

2 This is not a surprise since it was shown in [51] that one gets the GUT gauge symmetry from M-theory on G2
manifolds with A4 singularity.
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(i) Using two-dimensional N = 4 sigma models with U(1)r gauge symmetry and r + 2
hypermultiplets, we have constructed a special kind of G2 manifold. The latter are U(1)

quotients of eight-dimensional toric (HK) manifolds, X7 = X8
U(1)

. We have shown that

these seven-dimensional manifolds, in general, are given by real cones on S2 bundles
over complex two-dimensional toric varieties V2 = Cr+2/C∗r . Explicit models have been
given in terms of N = 2 sigma model realizations of V2.

(ii) We have discussed the link between the physics content of M-theory on such G2 manifolds
and the method of (p, q) webs. We have reconsidered and reformulated the method of
(p, q) webs using the toric geometry Mori vectors of V2 and brane charge constraint
equations. For the weighted projective space WP2

w1,w2,w3 , we have found that the
corresponding field model has G = U(w1n)×U(w2n)×U(w3n) as the gauge symmetry
group. This is required by the anomaly cancellation condition.
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